Trabalho 04 de Introdução ao Processamento de Imagem Digital

Sumário

2	Pad	rões binários locais (LBP)
	2.1	Definição
	2.2	Distâncias
	2.3	Resultados
	\mathbf{GL}	$\mathbf{c}\mathbf{M}$
	3.1	Definição
	3.2	Propriedades
	3.3	Resultados

1 Transformação de cores

1.1 Monocromático

Para a transformação de cores para o monocromático, utilizamos a função rgb2gray[1] do módulo color da biblioteca scikit-image[2].

A documentação informa que o único argumento a ser passado para o método é a imagem no formato RGB, e o método então "computa a luminância de uma imagem RGB".

grayscale = rgb2gray(image)

¹tradução livre

2 Padrões binários locais (LBP)

2.1 Definição

Os padrões binários locais (*Local Binary Patterns*, ou LBP em inglês) são utilizados para extrair descritores e realizar a análise de imagens monocromáricas. Compara-se cada pixel com seus 8 vizinhos, seguindo sempre uma mesma posição e sentido.

Então, sendo e_i o *i*-ésimo pixel, temos:

$$e_i = \begin{cases} 0, & \text{se } e_i < e_0 \\ 1, & \text{se } e_i \ge e_0 \end{cases}$$

Então o valor será:

$$LBP = \sum_{i=1}^{8} 2^{i-1} e_i$$

O descritor será então o resultado do histograma dos valores calculados. No caso do código, ele permite alguma parametrização, à qual variamos para avaliar os resultados. O método local_binary_pattern[3] do módulo feature do pacote skimage.

O primeiro parâmetro é a matriz com as intensidades de cinza da imagem. O segundo parâmetro, p, refere-se ao número de pontos de vizinhos circularmente simétricos (para quantização do espaço angular). O terceiro parâmetro r, refere-se ao raio do círculo (resolução espacial do operador). Um parâmetro opcional chamado method não foi colocado, e por padrão seu valor é default, considerando o padrão binário local original que é em escala de cinza, mas não é invariante em relação à rotação.

Desta forma, o código para a geração do histograma é o que segue:

```
def get_lbp_histogram(color_image, p = 8, r = 1):
    img = color.rgb2gray(color_image)
    patterns = local_binary_pattern(img, p, r)
    hist, _ = np.histogram(patterns, bins=np.arange(2**8 + 1),
    density=True)
    return hist
```

Para nosso caso, fizemos uma variação para os parâmetros p e r, considerando o exemplo de [4] adaptado na figura 1.

Utilizamos as tuplas $(p, r) = \{(4, 1), (8, 1), (12, 1.5), (15, 2), (24, 3)\}$

2.2 Distâncias

Para a análise dos histogramas, utilizamos as distâncias. euclideana, correlação, χ^2 , e Bhattacharyya.

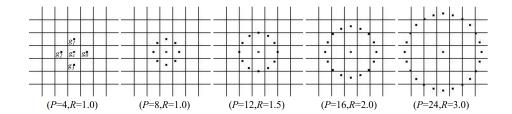


Figura 1: Imagem de [4] adaptada, mostrando os valores dos parâmetros utilizados neste trabalho.

Dados dois histogramas, $(H_1 \in H_2)$ definimos uma métrica de distância $(d(H_1, H_2))$ para expressar o quão próximos os histogramas estão.

No caso da distância euclideana, utilizamos o método euclidean do módulo spatial do pacote scipy.

Para este método, fornecemos os dois vetores (que são os histogramas) e a distância é computada como $||u-v||_2$, $\left(\sum (w_i|(u_i-v_i)|^2)\right)^{1/2}$, conforme [5].

Os outros métodos de comparação (correlação, χ^2 , Bhattacharyya) foram calculados a partir do método compareHist da biblioteca OpenCV, conforme [6].

Para este caso, os cálculos conforme a documentação em [7], temos os seguintes cálculos a partir dos histogramas :

Correlação:

$$d(H_1, H_2) = \frac{\sum_{I} (H_1(I) - \bar{H}_1)(H_2(I) - \bar{H}_2)}{\sqrt{\sum_{I} (H_1(I) - \bar{H}_1)^2 \sum_{I} (H_2(I) - \bar{H}_2)^2}}$$

onde

$$\bar{H}_k = \frac{1}{N} \sum_{I} H_k(J)$$

• Chi-Quadrado (χ^2) :

$$d(H_1, H_2) = \sum_{I} \frac{(H_1(I) - H_2(I))^2}{H_1(I)}$$

• Bhattacharyya:

$$d(H_1, H_2) = \sqrt{1 - \frac{1}{\sqrt{\bar{H}_1 \bar{H}_2 N^2}} \sum_{I} \sqrt{H_1(I) \cdot H_2(I)}}$$

2.3 Resultados

Para a presente análise, uma figura típica é a 2.

Na primeira linha da figura temos as imagens originais e seus equivalentes monocrmáticos, de onde serão computados os histogramas.

Na segunda linha, temos as imagens na escala de cinza com o LBP com número de pontos igual a 4 e raio do círculo para quantização com valor 1, para cada uma das imagens e seus respectivos histogramas à esquerda.

Na terceira linha, para computar o LBP utilizamos o número de pontos igual a 8 e raio 1.

Para a quarta linha, calculamos o LBP utilizando 12 pontos e o valor 1.5 para o raio.

Por fim, para a quinta linha, a quantidade de pontos é 24 e o raio, 3.

Ao final da imagem existe uma tabela para cada uma das variações de pontos e raios e as distâncias de cada histograma (euclideana, correlação, χ^2 e Bhattacharyya).

O que fica claro é que para os valores p=4 e r=1, para todas as imagens há um acúmulo muito grande de valores no começo do histograma, e sem variações depois deste início.

Quanto p=8 e r=1, percebemos uma distribuição maior nos histogramas e picos em pontos variados.

Para p=12 e r=1.5, há um pico muito grande no valor 0 e variações pontuais ao longo do espectro do histograma, mas menos proeminentes que com p=8 e r=1.

Ao final, para p=24 e r=8, há um valor extremamante alto no 0 e uma variação discreta ao longo do histograma, mas com a maioria dos valores iguais a 0.

Para a tabela, observamos que texturas próximas (no caso da figura 2 temos árvores e gramas), a distância euclideana mostrou-se boa para valores de p=24 e r=3, mas também com p=4 e p=8 e r=1.

A correlação em todos os casos também mostrou-se adequada.

Para a distância χ^2 , p=4 e r=1 mostro-se melhor. Para p=24 e r=8 na mesma distância, o valor é quase 3 vezes maior.

A distância de Bhattacharyya se mostrou boa para p=4 e r=1.

A figura 3 mostra imagens distintas e com valores de distâncias maiores, logo, com a correlação menor.

3 GLCM

3.1 Definição

O exemplo 12.12 de [10] apresenta um exemplo de como calcular a matriz de co-ocorrência, conforme figura 4.

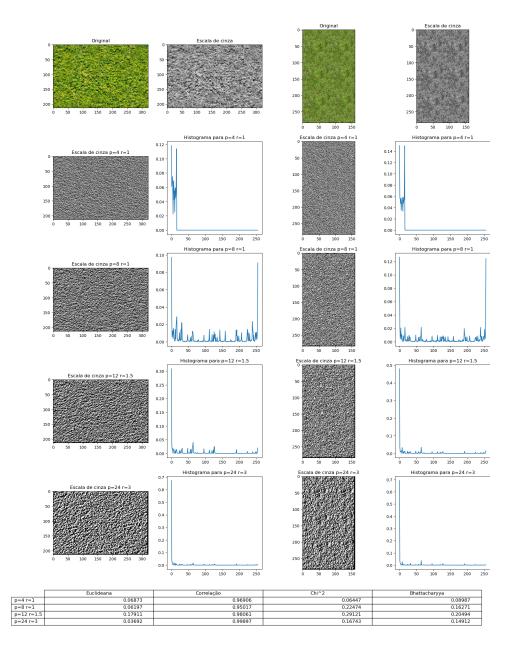


Figura 2: À esquerda e acima uma imagem com textura de árvores. Duas imagens para a direita, uma imagem com textura de grama.

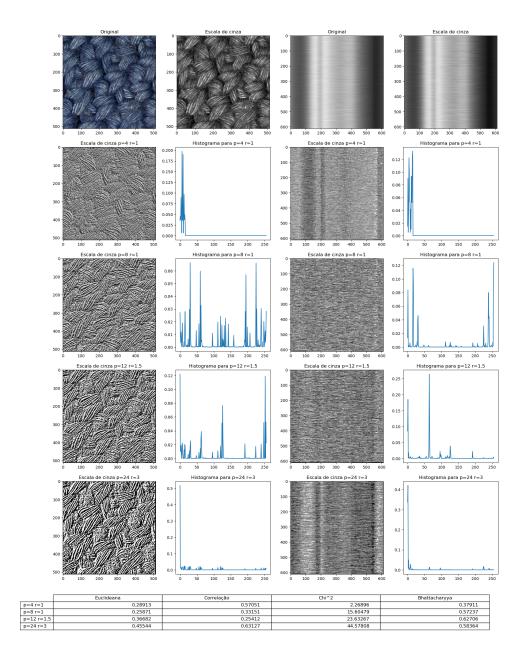


Figura 3: À esquerda e acima uma imagem com textura que remete a um tecido. Duas imagens para a direita, uma imagem com textura metálica.

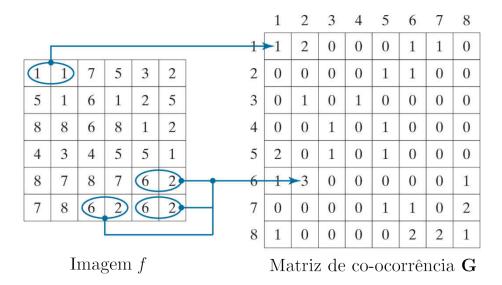


Figura 4: Cálculo da matriz de co-ocorrência conforme [10] adaptado.

De forma simples, co-ocorrência, pode ser definida por uma matriz de frequências relativas $P(i, j; d, \theta)$, na qual dois elementos de textura vizinhos, separados por uma distância d em uma orientação θ ocorrem na imagem, um com propriedade i e o outro com propriedade j, conforme [11] e [12].

No caso do código, utilizamos o método graycomatrix[8] do módulo feature do pacote skimage.

Este método tem 3 argumentos obrigatórios:

- image: a matriz que corresponde a imagem em formato monocromático.
- distances: um vetor de distâncias a serem utilizados.
- angle: um vetor de ângulos a serem utilizados.

No nosso caso, para o argumento distances utilizamos os valores [1, 5, 10] e o argumento distances com os valores [0, np.pi / 4, np.pi / 2, 3 * np.pi / 4]

O trecho do código que contém estas chamadas é o seguinte:

3.2 Propriedades

Para o cálculo das propriedades, utilizamos o método greycoprops [9] do módulo feature do pacote skimage. Neste método, o primeiro argumento é o P que é a matriz gerada a partir do cálculo do GLCM e o segundo argumento é a propriedade (nomeada como prop) que pode assumir os valores abaixo, com os seguintes cálculos conforme a documentação:

• contrast:

$$\sum_{i,j=0}^{levels-1} P_{i,j}(i-j)^2$$

• dissimilarity:

$$\sum_{i,j=0}^{levels-1} P_{i,j}|i-j|$$

• homogeneity:

$$\sum_{i,j=0}^{levels-1} \frac{P_{i,j}}{1 + (i-j)^2}$$

• ASM:

$$\sum_{i,j=0}^{levels-1} P_{i,j}^2$$

• energy:

$$\sqrt{ASM}$$

• correlation:

$$\sum_{i,j=0}^{levels-1} P_{i,j} \left[\frac{(i-\mu_i)(j-\mu_j)}{\sqrt{(\sigma_i^2)(\sigma_j^2)}} \right]$$

Cada GLCM é normalizado de modo a ter soma de 1 antes dos cálculos.

3.3 Resultados

Um resultado típico para o trabalho presente é o que está na figura 6.

Podemos observar as imagens originais, e logo abaixo de cada uma delas, uma tabela com os valores calculados para diferentes características e diferentes raios com diferentes ângulos. Nas colunas, apresentamos 3 ângulos: $0, \pi/4$ e $\pi/2$.

As características são as que seguem:

• diss: dissimilaridade

• cont: contraste

• eng: energia

corr: correlação

• ASM: segundo momento angular

• homo: homogeneidade

Cada característica teve o valor de distância variando no conjunto $\{1,5\}$. A figura 5 é um comparativo com a figura 2 que trata das mesmas duas

imagens de origem e a figura 6 é um comparativo com a figura 3 que trata das mesmas duas imagens de origem.

Os valores de distância, mesmo que usando a mesma metodologia, não são comparáveis por si só, mas é possível realizar a comparação em pares. Observa-se neste caso, que as distâncias euclideanas entre as mesmas imagens considerando dissimilaridade, contraste e energia da figura 5 são inferiores com relação à imagem 6.

Com relação à correlação, observa-se que as imagens referentes à figura 5 tem mais valores 1 do que com relação à figura 6, o que faz sentido na medida em que as imagens são mais similares.

Com relação à distância χ^2 , as imagens de floresta e grama em relação a energia estão mais próximas, mostrando que talvez neste caso este tipo de distância não seja tão interessante para a análise das imagens deste relatório.

No caso da distância de Bhattacharyya, homogeneidade das imagens mais próximas 5 é menor que a das imagens que são distintas 6.

4 Limitações

Todos os testes foram feitos com imagens coloridas com apenas 3 canais (RGB), sem a 4a camada (transparência).

O código permite inserção de imagens retangulares onde altura e largura da imagem tem valores distintos.

	Euclideana	Correlação	Chi^2	Bhattacharyya
diss d=1	16.7476	0.78654	9.17319	0.02979
diss d=5	34.52617	-0.05087	26.81572	0.01245
cont d=1	1419.8349	0.83266	1312.09363	0.04914
cont d=5	3776.92682	-0.16449	4552.13038	0.02414
eng d=1	0.00903	0.71754	0.00959	0.01365
eng d=5	0.00954	1.0	0.01176	0.00109
corr d=1	0.3622	0.83405	0.23632	0.04481
corr d=5	0.12484	-0.12298	-0.18672	nan
ASM d=1	0.0002	1.0	0.00056	0.02753
ASM d=5	0.0002	1.0	0.00067	0.99985
homo d=1	0.02591	0.71973	0.02034	0.05027
homo d=5	0.03032	0.22164	0.04029	0.01416

Figura 5: À esquerda, uma textura remetendo a árvores, e à direita uma textura de grama. Um comparativo entre esta figura e a figura 2, que trata das mesmas imagens.

	a=0	a=π/4	a=π/2
diss d=1	6.9018	11.13849	7.26059
diss d=5	24.0562	25.2628	23.27423
cont d=1	86.27263	222.31623	95.51286
cont d=5	1015.32974	1121.93761	952.25636
eng d=1	0.01906	0.01511	0.01843
eng d=5	0.01072	0.01049	0.01083
corr d=1	0.95662	0.88816	0.95196
corr d=5	0.48948	0.43495	0.52031
ASM d=1	0.00036	0.00023	0.00034
ASM d=5	0.00011	0.00011	0.00012
homo d=1	0.15323	0.10017	0.14647
homo d=5	0.0474	0.04515	0.04938

	a=0	a=π/4	a=π/2
diss d=1	1.38107	12.48726	12.47501
diss d=5	5.30857	11.36386	10.89877
cont d=1	5.43511	282.45285	282.5184
cont d=5	46.42753	227.82418	210.57576
eng d=1	0.04141	0.01411	0.01416
eng d=5	0.02037	0.01443	0.01482
corr d=1	0.9992	0.95834	0.95833
corr d=5	0.99316	0.96641	0.96893
ASM d=1	0.00172	0.0002	0.0002
ASM d=5	0.00042	0.00021	0.00022
homo d=1	0.56111	0.10042	0.10133
homo d=5	0.17607	0.10139	0.10741

	Euclideana	Correlação	Chi^2	Bhattacharyya
diss d=1	7.71284	0.56546	8.32424	0.23442
diss d=5	26.41602	0.19056	28.83769	0.11258
cont d=1	212.41985	0.55154	458.1518	0.30134
cont d=5	1512.71294	0.23119	2214.81974	0.20887
eng d=1	0.02278	0.62482	0.02727	0.16715
eng d=5	0.01116	0.26425	0.01164	0.05555
corr d=1	0.08233	0.55164	0.00748	0.00996
corr d=5	0.85872	0.24175	1.55446	0.02535
ASM d=1	0.00136	0.6364	0.00509	0.31567
ASM d=5	0.00033	1.0	0.00096	0.11272
homo d=1	0.41037	0.59938	1.09959	0.2587
homo d=5	0.15194	0.11051	0.48751	0.0896

Figura 6: À esquerda, uma textura remetendo a tecido, e à direita uma textura de metal. Um comparativo entre esta figura e a figura 3, que trata das mesmas imagens.

Tentamos usar a divergência de Kullback-Leibler:

$$d(H_1, H_2) = \sum_{I} H_1(I) \log \left(\frac{H_1(I)}{H_2(I)}\right)$$

mas como já havia um conjunto robusto de informações, optamos por utilizar as medidas de distância já citadas ao longo do trabalho.

Alguns cálculos de distância de Bhattacharyya a partir do GLCM de duas imagens resultou em nan possivelmente porque os valores estavam muito próximos de 0.

Utilizamos para fins didáticos o os números com apenas 5 casas decimais.

Referências

- [1] Module: color https://scikit-image.org/docs/dev/api/skimage.color.html#skimage.color.rgb2gray Acessado em: 2021-05-15
- [2] Scikit-image https://scikit-image.org/ Acessado em: 2021-05-19
- [3] Module: feature https://scikit-image.org/docs/dev/api/skimage.feature.html#skimage.feature.local_binary_pattern
 Acessado em: 2021-06-15
- [4] OJALA, T., Matti Pietikainen, Topi Maenpaa. Multiresolution Gray Scale and Rotation Invariant Texture Classification with Local Binary Patterns http://vision.stanford.edu/teaching/cs231b_ spring1415/papers/lbp.pdf Acessado em: 2021-06-09
- [5] scipy.spatial.distance.euclidean https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.euclidean.html
 Acessado em: 2021-06-15
- [6] Histogram Comparison https://docs.opencv.org/3.4/d8/dc8/ tutorial_histogram_comparison.html Acessado em: 2021-06-16
- [7] Histograms https://docs.opencv.org/ 3.4/d6/dc7/group__imgproc__hist.html# gga994f53817d621e2e4228fc646342d386a035d9882661edb22a95895516e441428 Acessado em: 2021-06-16
- [8] Histograms https://scikit-image.org/docs/dev/api/skimage.feature.html#graycomatrix Acessado em: 2021-06-16
- [9] Histograms https://scikit-image.org/docs/dev/api/skimage.feature.html#graycoprops Acessado em: 2021-06-16
- [10] GONZALEZ, R. C.; WOODS, R. E. Digital Image Processing. 4th. ed. USA: Pearson Education Ltd., 2018. ISBN 0-13-335672-8

- [11] PEDRINI, H. C.; Introdução ao Processamento Digital de Imagem MC920 / MO443, 2021. https://www.ic.unicamp.br/~helio/disciplinas/M0443/aula_textura.pdf Acessado em: 2021-06-17
- [12] Método para classificação de imagens baseada em matrizes de coocorrência utilizando características de textura https://homepages. dcc.ufmg.br/~william/papers/paper_2003_CBCG.pdf Acessado em: 2021-06-20
- [13] Compare the LBP in python https://stackoverflow.com/questions/51239715/compare-the-lbp-in-python Acessado em: 2021-06-17